Analysis of the Hardware Requirements for a Heavily Downsized Gasoline Engine Capable of Whole Map Lambda 1 Operation

Mike Bassett, Christian Vogler, Jonathan Hall, James Taylor, Adrian Cooper, and Simon Reader MAHLE Powertrain Limited, Northampton, UK

Kevin Gray and Richard Wall Aeristech Limited, Kenilworth, UK

Abstract

MAHLE has developed a heavily downsized demonstrator engine to explore the limits, and potential benefits, of engine downsizing. The 1.2 litre, 3-cylinder, MAHLE downsizing (Di3) engine, in conjunction with an Aeristech 48 V electric supercharger (eSupercharger, eSC), achieves a BMEP level of 35 bar and a specific power output in excess of 160 kW/litre. The eSupercharger enables high specific power output, good low speed torque and excellent transient response. The resulting heavily downsized engine has been installed into a demonstrator vehicle that also features 48 V mild hybridization.

At specific power output levels above 90 kW/litre the engine is operated with excess fuel in order to protect the turbine from excessive exhaust gas temperatures. In this analytical study, the boosting system requirements to maintain lambda 1 fuelling, via the use of EGR, across the entire engine operating map for the eSupercharged version of the MAHLE Di3 engine, have been explored. It has been found that a HP EGR system, with the eSupercharger located downstream of the main compressor, has the greatest potential to enable lambda 1 operation at maximum power output. At this point an EGR flow rate of 15 % is required, which would require about 38 kW of EGR cooling capability.